If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+13k+18=0
a = 2; b = 13; c = +18;
Δ = b2-4ac
Δ = 132-4·2·18
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*2}=\frac{-18}{4} =-4+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*2}=\frac{-8}{4} =-2 $
| 2k^2+13+18=0 | | 2x-3/3-x-5/7=3x-2x-9/21 | | 1,5x+2=-1,4 | | 3x-(10x+7)-2x(2x-12x+1)+3=8x+3 | | f+9/3=4 | | 7m-19=2 | | h-9.79=1.21 | | -14z-(-11z)+-9=0 | | 3/2x+2=-7/5 | | h-19.7=-1.7 | | 11x–9=13x+7 | | 11x–9=13x+7 | | -6z-(-5z)=8 | | 11u-6u-5=5 | | n/3=-4.3 | | 3=3(z-8) | | c+4/2=3 | | 20f-20=18f | | q+7/3=3 | | 8.79=3f | | 5(x+1)=-2x+7 | | w(3w-2)-21=0 | | -5w+20=-15w | | g-7/2=1 | | 2z+2z+5+2z= | | 9x–13=7x+15 | | s/2=1.82 | | 3=g/5-6 | | -43=23-6z | | f+1.5=17.8 | | x²-x²=1 | | 2(t+1)=t2 |